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I .  

MEASURED PERFORMANCE O F  WATER VAPOR JETS FOR 

SPACE VEHICLE ATTITUDE CONTROL SYSTEMS 

By Gerd Kanning 
Ames Research Center 

SUMMARY 

Measurements were made t o  evaluate the  performance of water-vapor j e t s  
i n  the  th rus t  range from 5 t o  200 dynes. It w a s  found necessary t o  reduce the  
ambient pressure t o  l e s s  than 1 micron t o  obtain r e s u l t s  applicable t o  a space 
environment. Under these conditions, the  s teady-state  spec i f ic  impulse w a s  
58 t o  65 percent of t he  value expected f o r  isentropic  flow regardless of nozzle 
s i ze .  The spec i f ic  impulse measured for a t r a i n  of pulses w a s  always found t o  
be l e s s  than t h a t  f o r  steady t h r u s t .  For pulses l a s t i n g  1/2 t o  5 seconds, the  
measured spec i f ic  impulse w a s  10 t o  25 percent l e s s  than the  s teady-state  
value. 

INTRODUCTION 

Disturbances encounted by unmanned spacecraf t  causing e r rors  i n  a t t i t u d e  
and i n  o r b i t a l  pos i t ion  a r e  inherently s m a l l .  Analyses of j e t  systems f o r  con- 
t r o l l i n g  a t t i t u d e  have shown t h a t  the m a s s  of propel lant  required i s  minimized 
when the  impulse delivered by the  control  system i s  su f f i c i en t  t o  j u s t  overcome 
the  disturbances.  Control of o r b i t a l  posi t ion,  or s t a t i o n  keeping, a l s o  
requires very low impulses. For example, the  year ly  impulse f o r  s t a t i o n  keep- 
ing i n  a synchronous equator ia l  o rb i t  corresponds t o  a change i n  the  s a t e l l i t e  
ve loc i ty  of only 2 m/sec. 

The impulse imparted during a t h r u s t  pulse can be controlled by varying 
e i t h e r  the th rus t  l e v e l  or pulse  duration. If a s m a l l  impulse i s  required, it 
i s  of ten  advantageous t o  use low th rus t  l eve ls ,  thereby avoiding the need f o r  
extremely short  pulses .  For low th rus t  l eve ls ,  a condensible vapor has inher-  
en t  advantages. The proper se lec t ion  of a vapor can r e s u l t  i n  a low-volume, 
low-pressure system i n  which no pressure regulators  a r e  required.  In  cont ras t ,  
a gaseous propel lant  requires  high pressure storage with pressure regulators  t o  
reduce the  pressure a t  the  nozzles t o  a lower l e v e l  than the  storage pressure.  
On the other hand, t he  use of a condensible vapor introduces other d i f f i c u l t i e s  
not present when the  propel lant  i s  gaseous. F i r s t ,  vapor pressure and, there-  
fore ,  j e t  t h rus t  are strongly dependent upon temperature. Second, t he  temper- 
a tu re  differences within the  system must be control led t o  prevent condensate 
from col lec t ing  i n  the  l i n e s  leading t o  the  nozzles. Ei ther  ac t ive  or passive 
temperature control  i s  therefore  required for vapor systems. 

Water i s  a possible  choice of a propel lant  f o r  a vapor-jet  system from 
the standpoints of spec i f i c  impulse, vapor pressure,  and corrosiveness. The 
s teady-state  performance of water-vapor j e t s  w a s  reported i n  reference 1. 



During t h e  course of t he  current study, it w a s  discovered tha t  t he  ambient 
pressure had an unpredictable e f f ec t  on t h e  performance of the smaller nozzles 
and t h a t  t he  anibient pressure must be 1 p o r  less f o r  the  results t o  be appl i -  
cable t o  the  near ly  per fec t  vacuum environment of space. m e  e a r l i e r  experi- 
ments ( ref .  1) correspond t o  an anibient pressure from 30 t o  30 p and, therefore  
cannot be extrapolated t o  zero pressure.  For t h i s  reason, the  earlier experi- 
ments w e r e  repeated and t h e  results presented herein include the  steady-state 
performance applicable t o  a space environment as w e l l  as information on the  
performance of t h e  jets when operated i n  a pulsed mode. 

NOTAT I O N  

E 

nozzle throa t  diameter, cm 

gravi ta t iona l  accelerat ion,  980 cm/sec2 

spec i f ic  impulse, thrust/gm/sec, sec 

spec i f ic  impulse f o r  one-dimensional isentropic  flow 

mass flow r a t e ,  gm/sec 

nozzle chamber pressure, dynes/cm2 

temperature of vapor i n  the  vapor generator, C 

area r a t i o  of nozzle, exit  area divided by throat  area 

pressure i n  microns, mm ~g 

0 

TEST EQUIPMENT 

T e s t  equipment w a s  designed and constructed fo r  measuring e i the r  the  
steady-state o r  t rans ien t  performance of small vapor j e t s .  The equipment con- 
s i s t e d  of an instrument capable of measuring e i t h e r  t o t a l  impulse or steady 
th rus t ,  two th rus to r  un i t s ,  and a vacuum chamber. 

An instrument w a s  designed f o r  measuring the  t o t a l  impulse delivered t o  
a t a rge t  placed i n  the  nozzle j e t .  The basic  operation of t he  instrument i s  
analogous t o  t h a t  of a b a l l i s t i c  galvanometer ( r e f .  2 ) .  The t o t a l  impulse 
delivered t o  a t a rge t  is  measured by observing t h e  t o t a l  swing of a to r s iona l  
pendulum with a known spring constant and moment of i n e r t i a .  The spring con- 
s t an t  and moment of i n e r t i a  are determined by measuring the  na tura l  frequency 
of the  pendulum f o r  several  known increments of t he  moment of i n e r t i a  of t he  
arm. From the  dynamics of the  pendulum, a re la t ionship  can be derived which 
gives the  impulse delivered t o  the  $arget on the  a rm;  t h a t  i s ,  

dkI 
d 

Impulse = - 

where 
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emax maximum angular def lec t ion  of -the pendulum 

k to r s iona l  spring constant of the suspension w i r e  

I moment of i n e r t i a  of t he  pendulum arm 

d distance from the  center  of suspension t o  the  center  of the  t a rge t  

This relat ionship i s  exact f o r  pulses of zero duration; f o r  pulses of f i n i t e  
duration, l i t t l e  e r ro r  is  introduced, provided the  pulse  i s  short  r e l a t i v e  t o  
the  period of the  pendulum. To permit accurate measurement f o r  pulses of up 
t o  5 seconds duration the  pendulum period w a s  var ied from 10 t o  60 seconds by 
changing the  moment of i n e r t i a .  

Figure 1 is  a photograph of the  instrument. The relat ionship given above 
f o r  determining the  t o t a l  impulse requires t h a t  t he  i n i t i a l  swing of the  t o r -  
s iona l  pendulum be undamped. After  the  maximum amplitude w a s  reached, the 
damping c o i l s  shown i n  the  photograph were energized t o  c r i t i c a l l y  damp the  
re turn  motion of the pendulum. 

Maintaining s u f f i c i e n t  s e n s i t i v i t y  t o  measure s m a l l  t o t a l  impulse 
required t h a t  the spring constant and moment of i n e r t i a  of t he  ro ta t ing  member 
be s m a l l .  Both of these requirements precluded placing a thrus tor  on the  
ro t a t ing  arm. It w a s  necessary, therefore ,  t o  use an ind i rec t  technique i n  
which the  force of t he  nozzle j e t  w a s  measured as it impinged on a t a rge t  
mounted on the  ro t a t ing  member (see f i g .  1). 
t h r u s t  of the  j e t  and the  force it exerts  when impinging on the  t a rge t  i s  
therefore  needed. The establishment of t h i s  re la t ionship  required t h a t  the  
instrument be operated t o  measure s teady-state  force e i t h e r  with a thrus tor  
mounted on the  arm as i n  f igure  2 or with the  th rus to r  attached t o  the  vacuum 
tank closure p l a t e  as i n  f igure  1 , f o r t h e n t h e  force on the  t a rge t  could be 
ca l ibra ted  against  t he  react ion t h r u s t .  For e i t h e r  s teady-state  measurement, 
t he  j e t  force w a s  opposed by the  force transducer shown i n  f igure  2. This 
transducer consisted of a permanent magnet within a d i r e c t  current solenoid. 
The transducer w a s  ca l ibra ted  with dead weights. 

A re la t ionship  between the  

For the s teady-state  measurement the  thrus tor  had t o  be l i g h t ,  s o  t h a t  it 

A s m a l l  un i t  with a low propellant capacity and a minimum of in s t ru -  
could be mounted on the  balance arm without breaking the  suspension wire ( see  
f i g .  2 ) .  
mentation w a s  b u i l t  t o  s a t i s f y  t h i s  requirement. A l a rge r  un i t ,  with 
addi t iona l  features  and vapor capacity, w a s  constructed f o r  measuring the  
t r ans i en t  performance during pulsed-mode operation when the  j e t  impinges on 
the  t a r g e t  (see f i g .  1). In  each thrus tor ,  t he  water w a s  absorbed in to  ce l -  
lu lose  sponges, arranged t o  provide su f f i c i en t  area from which evaporation 
could take place.  The j e t  w a s  control led by a sof t -seated,  normally closed 
solenoid valve t h a t  w a s  actuated by 8 t o  10 W.  Once the  valve was open, it 
remained open u n t i l  t he  power w a s  reduced t o  less than 1/2 W. 
t h e  heat delivered t o  the nozzle region t o  be regulated between 1/2 and 10 W 
f o r  steady-state operation. 
each th rus to r  w a s  control led with heating c o i l s  wrapped around the  outside of 
t h e  un i t s .  Temperature w a s  measured by a thermistor mounted so t h a t  it would 

This permitted 

The temperature of t he  vapor generator port ion of 
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determine the  temperature of the vapor. 
w a s  not made, pressure w a s  inferred from the  unique temperature-pressure 
relat ionship f o r  saturated vapors. 

When a separate pressure measurement 

Several addi t iona l  features were avai lable  i n  the  la rger  th rus tor .  This 
th rus tor  consisted of two main pa r t s  -- a plenum chamber and a vapor supply 
chamber. For continuous thrust ing,  unrestr ic ted flow w a s  permitted from the  
vapor generator t o  the  plenum chamber. 
between the  vapor generator and plenum w a s  constr ic ted by an o r i f i c e  (see 
f i g .  3) .  Also, provision w a s  made for manually adjust ing the  plenum volume. 
The pulse shape could then be varied by changing the  plenum volume and o r i f i c e  
s ize .  Pressure time h i s t o r i e s  during a t h r u s t  pulse were obtained from a 
pressure c e l l .  This c e l l  could be located t o  measure the  pressure i n  the  
plenum as i l l u s t r a t e d  i n  f igure  3 o r  between the  valve and nozzle as shown i n  
f igure  1. 

To invest igate  pulse shaping, t he  flow 

Four f la t - faced  convergent-divergent nozzles and one sharp-edged o r i f i c e  
were machined (see f i g .  4 ) .  
r a t i o  of 100, an entrance cone angle of  60°, and an exit cone angle of 30'. 
The nozzle with sharp edges on the e x i t  cone w a s  machined t o  match the  dimen- 
sions of one of t h e  f la t - faced  nozzles. A f t e r  t he  machining process, t he  
inside dimensions of a l l  nozzles were measured with a microscope. The dimen- 
sions varied s l i g h t l y  from those t h a t  had been specif ied and resul ted i n  
d i f f e ren t  area r a t i o s  ( f i g .  4 ) .  

The nozzles had been designed with an expansion 

The balance and the  various thrustors  were operated i n  a s m a l l  vacuum- 
chamber and b e l l - j a r  combination tha t  permitted the  balance deflections t o  be 
observed v isua l ly .  A mechanical pump and a d i f fus ion  pump were used t o  evac- 
uate the s t a in l e s s  s t e e l  vacuum tank containing the  apparatus. Ambient pres -  
sure i n  the  vacuum tank w a s  measured e i t h e r  with a thermocouple gage or an 
ion gage. The a d i e n t  pressure w a s  kept below 1 IJ- f o r  a l l  experiments 
intended t o  simulate a vacuum environment. A l i qu id  nitrogen cold t r ap  w a s  
used t o  maintain pressures below 1 p during continuous thrust ing periods. 

RESULTS ANE DISCUSSION 

Idea l  Nozzle Performance 

One -dimensional isentropic  flow i s  a convenient standard f o r  comparing 
nozzle performance. Well-designed nozzles of t he  s i ze  usually used i n  rockets 
or turbines approach t h i s  performance within a f e w  percent. 
the  Ldealperformance of t he  nozzles of t h i s  study, the f l u i d  entering the  
nozzle i s  assumed t o  be dry steam. A s  t he  vapor i s  expanded through the  
nozzle, f i rs t  some l iqu id  phase w i l l  be formed and entrained i n  t h e  stream. 
As the  pressure falls  below the  t r i p l e  point ,  the  so l id  phase w i l l  be formed. 
For calculat ing the  i d e a l  spec i f ic  impulse, a t  any given point  i n  the  expan- 
sion, a l l  phases present were assumed t o  be a t  the  same temperature. This 
cannot occur physical ly  since insuf f ic ien t  t h e  i s  avai lable  for heat  t o  be 
t ransferred from the  l i qu id  o r  so l id  phases as t he  expansion proceeds. An 
a l te rna t ive  assumption, representing the  opposite extreme, i s  t h a t  the  l i qu id  

For calculat ing 



and so l id  phases remain a t  the  temperature a t  which they were formed as the  
gas about them cools during the  expansion. Neither of the  two assumptions i s  
r e a l i s t i c ,  but  t he  difference i n  the  calculated performance based on e i t h e r  
assumption i s  only a few percent.  The idea l  spec i f ic  impulse based on the  
isentropic  expansion assumption and the  geometric area r a t i o  i s  shown i n  
f igure  4 f o r  each of the  t e s t  nozzles. 

There a re  severa l  reasons f o r  expecting t h a t  t he  measured performance 
w i l l  not approach the  idea l .  By def in i t ion ,  one-dimensional isentropic  flow 
does not consider t he  e f fec ts  of viscosi ty .  For nozzles of the  s i z e  of i n t e r -  
e s t ,  the  e f f ec t s  of v i scos i ty  might be expected t o  reduce the  performance from 
the  idea l  value. Performance w i l l  a l s o  be reduced i f  the  l i qu id  phase i s p r e s -  
ent  i n  the  f l u i d  enter ing the  nozzle. Liquid w i l l  be present i f  the  passages 
leading t o  the  nozzle a re  cooler than the  vapor generator where the  steam i s  
formed. 
the  nozzle i s  20 percent w a t e r  the  spec i f ic  impulse w i l l  be reduced by about 
10 percent. 

A n  estimate given i n  reference 1 showed t h a t  if  the  f l u i d  enter ing 

Measured Steady-State Performance 

The measured s teady-state  t h rus t s  f o r  the  various nozzles a re  shown i n  
f igure  5(a)  and the  corresponding m a s s  flow rates a r e  shown i n  f igure  5 (b ) .  
The vapor temperature range f o r  these r e su l t s  w a s  between 1 .8~  and 3 8 O  C.  
heat input t o  t h e  valve w a s  always su f f i c i en t  t o  keep the  valve and nozzle 
region a t  a temperature su f f i c i en t ly  grea te r  than the  r e s t  of the  thrus tor  
un i t  t o  insure t h a t  no condensed f l u i d  entered the  nozzle. The t h r u s t  and 
m a s s  flow r a t e  were assumed t o  vary as (pressure)n and the  bes t  f i t ,  i n  the  
l e a s t  squares sense, t o  the  r e su l t s  w a s  found. 

versus th rus t  i n  f igure  6 have been calculated from the  l e a s t  squares f i t  data  
of f igures  5 (a )  and 5 ( b ) .  
spec i f ic  impulse f o r  isentropic  flow t o  account f o r  differences i n  area r a t i o .  
The r a t i o  of 

These r e su l t s  f a l l  i n  the  same band as the  r e su l t s  reported by R. John and 
A. Jonath ( r e f s .  3 and 4)  f o r  nozzles tha t  use ammonia as a propel lant .  

The 

The curves of Isp/ISP(isen) 

The spec i f ic  impulse w a s  normalized t o  theo re t i ca l  

Isp/Isp(isen , generally, increased from about 0.58 t o  0.65 as 
the th rus t  increased over i he range recorded f o r  each nozzle t e s t ed  ( f i g .  6 ) .  

The nozzles t e s t ed  were nearly iden t i ca l  t o  those described i n  NASA TN 
D-1302 ( r e f .  1) and it w a s  therefore  ant ic ipated t h a t  the steady-state r e su l t s  
would match the  e a r l i e r  work. This, however, w a s  not the  case s ince the  
e a r l i e r  r e su l t s  indicated the  spec i f ic  impulse tends toward zero as the  t h r u s t  
l e v e l  i s  decreased. The discrepancy between the  two sets of r e s u l t s  w a s  
traced t o  a difference i n  the  ambient pressure i n  the  t e s t  chamber. The ambi- 
ent  pressure of t he  current t e s t s  w a s  1 p or l ess ,  i n  contrast  t o  30 t o  50 p 
f o r  e a r l i e r  t e s t s .  The e f f e c t  of t h i s  ambient pressure difference on measured 
t h r u s t  i s  i l l u s t r a t e d  i n  f igure  7. Note tha t ,  f o r  each nozzle, t he  t h r u s t  
increases by about 15 dynes as the  pressure i s  decreased from about 10 t o  1 p 
and appears t o  remain nearly constant with fur ther  reduction i n  ambient pres -  
sure. Some increase i n  t h r u s t  with decreasing pressure i s  t o  be expected 
because of the  reduction i n  ambient pressure force over the  nozzle e x i t .  
However, t h i s  force i s  small compared t o  the  measured t h r u s t  increase. For 
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instance, t he  ambient pressure force i s  only about 2 dynes a t  an ambient 
pressure of 10 p f o r  the  l a rge r  of the  two nozzles f o r  which results a r e  pre-  
sented i n  f igure  7. The increase i n  th rus t  with decreasing pressure causes a 
corresponding increase i n  specif ic  impulse s ince the  mass-flow r a t e  does not 
vary with changes i n  ambient pressure below 50 p (see f i g .  5 ( b ) ) .  
increase i n  spec i f ic  impulse becomes grea te r  as the  nozzle throa t  diameter is 
reduced since the  addi t iona l  t h r u s t  becomes a grea te r  p a r t  of the  t o t a l .  

The 

The increase i n  t h r u s t  with decreasing ambient pressure w a s  observed when 
the  ind i rec t  measurement technique was used as w e l l  as when the  thrus tor  was 
mounted d i r e c t l y  on the  balance arm. 
increase w a s  a t t r i bu tab le  t o  the  th rus t  of the  j e t  and not t o  spurious forces 
on the balance arm induced by operation of the  j e t  within the  vacuum chamber. 
To ver i fy  the  absence of spurious forces  the  thrus tor  w a s  mounted i n  various 
posi t ions with the  j e t  directed away from the  t a rge t .  When t h i s  w a s  done, the 
j e t  caused no deviation of the  balance arm from the  n u l l  posit ion,  regardless 
of ambient pressure l eve l .  

It was  established t h a t  t he  th rus t  

Subsequent t e s t s  established t h a t  the  th rus t  increases with decreasing 
ambient pressure f o r  o r i f i ce s  as wel l  as f o r  convergent-divergent nozzles 
(see f i g .  8) .  
th rus t  with ambient pressure might be re la ted  t o  desorption of a f i l m  of vapor 
from the  f l a t  surface t h a t  surrounds the  e x i t s  of both the  nozzles and the  
o r i f i ce .  This explanation w a s  disproved by t e s t i n g  the  sharp-edged nozzle 
shown i n  f igure  4. In  t h i s  instance, t he  same var ia t ion  of t h rus t  with ambi- 
ent  pressure w a s  observed as f o r  t he  f la t - faced  nozzles. 

This f a c t  l ed  t o  the  suggestion t h a t  the  pecul iar  var ia t ion  of 

Measured Transient Performance 

The spec i f ic  impulse obtainable under steady-state conditions w a s  found 
t o  f a l l  i n  a band between 58 and 65 percent of t heo re t i ca l  
l e s s  of nozzle s i ze .  Whether the  spec i f ic  impulse remained the  same under 
pulse mode operation required fu r the r  invest igat ion.  

Isp(isen) regard- 

The t e s t s  t o  study the operation of the  j e t  i n  a pulsed mode required 
t h a t  t he  force exerted by the  j e t  upon a t a rge t  be re la ted  t o  nozzle th rus t .  
Several experiments were made t o  observe the  e f f e c t  of t a r g e t  s i ze  and nozzle- 
to - ta rge t  distance on the  force on the. t a rge t .  For a 5 em diameter ta rge t ,  
there  w a s  a region of nozzle-to-target distance between 1.3 and 1.8 em over 
which the force on the  t a rge t  w a s  constant. With t h i s  spacing, the  r a t i o  of 
t a rge t  t h rus t  t o  nozzle t h r u s t  was  about 1 .4  f o r  a l l  nozzles t e s t ed  (see 
f i g .  9 ) .  

Once the  t a rge t  ca l ibra t ion  fac tor  w a s  established, the  t o t a l  impulse 
from the thrus tor  w a s  obtained from the  maximum deflect ion of the  pendulum. 
Figure 10 shows t h a t  these measurements agree qui te  wel l  with the  t o t a l  
impulse calculated from the  time h is tory  of t he  nozzle chamber pressures and 
the  average th rus t  coef f ic ien t  (determined from the  steady-state measurement 
with the  assumption t h a t  the  th rus t  coef f ic ien t  i s  independent of the  upstream 
pressure) .  
nozzle chamber pressures as follows : 

The t o t a l  impulse w a s  calculated from t h e  time h is tory  of the  
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Impulse = AtP,Cf d t  s 
where 

A t  nozzle throa t  area 

P, measured nozzle chamber pressure 

Cf average steady-state t h r u s t  coef f ic ien t  determined f o r  each nozzle from 
t h r u s t  the  data of f igure  5(a) ,  
AtPC 

The spec i f ic  impulse of several  of the  nozzles when operated i n  the  
pulsed mode w a s  determined. For these t e s t s  the  time between pulses w a s  kept 
constant a t  20 seconds while the  pulse duration w a s  varied from 1/2 t o  5 sec-  
onds. The equipment w a s  operated over a su f f i c i en t  time in t e rva l  t o  expend 
enough propellant t o  permit measurement of the  m a s s  loss .  
w e r e  monitored from time t o  time t o  measure t o t a l  impulse per  pulse.  
only var ia t ions observed i n  the  pulse were those which would be ant ic ipated 
because of s m a l l  deviations from the  desired temperature of the vapor gen- 
e ra tor .  The r e su l t s  of the  measurements a re  shown i n  f igure  11. For each 
nozzle the  s c a t t e r  of the  t e s t  points,  which w a s  t raced t o  the  m a s s  flow 
measurement, i s  roughly 10 percent of the theo re t i ca l  spec i f ic  impulse. The 
r e su l t s  indicated t h a t  spec i f ic  impulse is  reduced from 10 t o  25 percent from 
the  steady-state value f o r  pulse durations of from 1/2 t o  5 seconds. 

Individual pulses 
The 

Throughout the  t e s t s  there  w a s  no condensation t o  in t e r f e re  with per for -  
mance because the  temperature i n  the  region of the  nozzle w a s  always higher 
than t h a t  of the  vapor generator. The source of heat  w a s  the  power f o r  oper- 
a t ing  the  valve. This s i t ua t ion  w a s  purposely reversed by heating the  vapor 
generator, thereby r a i s ing  the  temperature and pressure of the vapor. Hence, 
as the  temperature difference progressively decreased between the vapor gen- 
e ra to r  and a point near the  entrance t o  the  passage leading t o  t he  nozzle 
(see f i g .  3),  the  t h r u s t  l e v e l  produced by the  nozzle increased. Attention, 
however, should be focused on the  character of t he  decay of t h rus t  following 
the  closure of the  valve (see f i g .  1 2 ) .  When the  measured temperature d i f -  
ference w a s  1.l0 C or greater ,  the th rus t  decayed rapidly immediately upon 
closure of t he  valve. A s  t h e  temperature difference w a s  decreased, the  decay 
t o  zero pressure w a s  delayed. This delay became more pronounced as the  tem- 
perature difference w a s  decreased t o  0.ko C. 
shown here) it appeared t h a t  t h e  valve f a i l e d  t o  close f o r  a period of time 
a f t e r  it w a s  de-energized. For these cases it is  surmised t h a t  t he  poppet w a s  
held open by ice  c rys t a l s .  
observed e f f ec t s  on pulse shape resul ted from vapor condensing i n  t h e  passage 
leading t o  the  nozzle. The consequences of condensation a re  obvious. F i r s t ,  
t he  spec i f ic  impulse w i l l  decrease. Second, and perhaps more important, a 
timed pulse w i l l  no longer y ie ld  the desired impulse. 

In  some of the  records (not 

It i s  inferred from these r e su l t s  t h a t  t he  

The f e a s i b i l i t y  of shaping t h e  pulse w a s  investigated b r i e f ly .  Pulse 
shaping has been proposed by R. S. Gaylord(ref.  5 )  as a method of damping f o r  



"on-off" type space vehicle a t t i t u d e  control  systems t h a t  employ f ixed 
switching boundaries t h a t  depend on a t t i t u d e  alone. 
damping "on-off" systems i s  an idea l  impulse of zero duration followed by a 
steady low-level t h rus t .  In  the  absence of switching hysteresis ,  t he  impul- 
s ive  decrease i n  angular veloci ty  of t he  vehicle w i l l  determine the  ve loc i ty  
reduction per  cycle and the  lower l imi t  of angular veloci ty  l i k e l y  t o  be 
at ta ined.  The l e v e l  of the  estimated ex terna l  torques on the  controlled 
spacecraft  w i l l  determine the  low-level t h r u s t  requirement. 
pulses, therefore, affords  a method by which t h e  angular rate of a spacecraft  
can be decreased without resor t ing t o  sens i t ive  rate measuring equipment or 
other logic  elements commonly used i n  the  mechanization of "on-off" type 
control  systems. 

The bes t  pulse shape f o r  

The use of shaped 

The desired pulse  shape can be approached by constr ic t ing the  flow in to  
a chamber t h a t  l i es  between the  valve and vapor generator (see f i g .  3) .  
t he  valve opens, t h e  i n i t i a l  t h rus t  i s  determined by the  s t a t i c  pressure with- 
i n  the  system. The r a t e  a t  which t h r u s t  decays is governed by the  chamber 
volume and the  r a t i o  of t he  diameters of nozzle th roa t  and of the  o r i f i c e  t h a t  
cons t r ic t s  t he  flow in to  the chamber. For t he  experiment, the  chamber was  
made as s m a l l  as possible.  
the  pressure transducer (see f i g .  3) .  

When 

Its volume w a s  mostly t h a t  of t he  l i n e  leading t o  

The l a rges t  r a t i o  of nozzle throa t  diameter t o  o r i f i c e  s i z e  yielded a 
r a t i o  of i n i t i a l  t o  f i n a l  t h rus t  of approximately 40 (see f i g .  13) .  
values of t h rus t  p lo t t ed  i n  f igure  13 w e r e  calculated from plenum pressure 
measurements combined with an average value of t h r u s t  coeff ic ient  and the  
known th roa t  area of the  nozzle. 
value) of the  decay of t he  i n i t i a l  t h rus t  w a s  about 1/2 second f o r  t he  two 
smallest  o r i f i ce s .  No d i f f i c u l t y  w a s  encountered i n  repeating any of the  
pulse shapes shown. 

The 

!The time constant (time t o  l/3 of i n i t i a l  

CONCLUSIONS 

Measurements t o  evaluate the  performance of water-vapor j e t s ,  f o r  nozzles 
i n  the  th rus t  range from 5 t o  200 dynes, indicate  the  following: 

1. Ambient pressure m u s t  be l e s s  than l m i c r o n  f o r  the r e su l t s  t o  be 
applicable t o  a space environment. 

2 .  The s teady-state  spec i f ic  impulse varies from 58 t o  65 percent of 
the  theo re t i ca l  value f o r  isentropic  flow. 

3. The spec i f ic  impulse measured for a t r a i n  of pulses l a s t ing  1/2 t o  
5 seconds i s  10 t o  25 percent l e s s  than the s teady-state  value. 
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4. Condensation, caused by heat t ransfer  from t h e  steam t o  the  passages 
leading t o  the  nozzle, must be avoided t o  ensure t h a t  a given timed pulse 
always y ie lds  the  same impulse and t o  prevent a reduction i n  spec i f ic  impulse. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, C a l i f . ,  May 4, 1966 
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